Using a natural language-inspired technique, researchers at the University of Central Florida, US, developed an interpretable and generalisable drug target interaction model that achieves 97 percent accuracy in identifying drug candidates for a broad variety of target proteins. Here, Dr Ozlem Ozmen Garibay and Aida Tayebi, who worked on the study, outline their work and how their findings could shape drug discovery.
Copyright: drugtargetreview.com – “Artificial intelligence-aided screening could boost speed of new drug discovery”
A new artificial intelligence (AI)-based DTI model developed by researchers at the University of Central Florida, has sped up the drug screening process against the COVID-19 virus. This research, published in Briefing in Bioinformatics,1 was conducted through an interdisciplinary collaboration between computer scientists and material scientists. This model, known as AttentionSiteDTI, is inspired by models developed for sentence classification in the field of natural language processing (NLP). It is also the first model that uses the pair of drug and target as a biochemical sentence, with relational meaning between protein pockets and drug molecules which is the key to capture the most valuable contextual semantic or relational information of the sentence. Furthermore, the AttentionSiteDTI model enables an end-to-end graph convolutional neural network model that learns embeddings from the graphs of small molecules and proteins which are not fixed and are sensitive to context similar in NLP.
The researchers outperformed other state‑of‑the‑art studies in predicting the interaction between drug and target and have identified candidates by using deep learning with a self‑attention mechanism to extract the features that rule the most in the complex interaction. They have proved high interpretability through the self-attention mechanism by focusing on the most important parts of the protein interacting with the drug compounds (binding sites); for example, those that contribute the most towards the interaction and high generalisability through the protein input representation that uses protein pockets in the form of graphs.
This is a critical step in the design and development of new drugs to know which biological properties of the compound governs the interaction. According to the study, a benefit of utilising graph convolutional networks is their robustness to different orientations of the three‑dimensional (3D) structures of proteins, however a drawback to this is to find high-quality 3D protein structure.[…]
Read more: www.drugtargetreview.com
Der Beitrag Artificial intelligence-aided screening could boost speed of new drug discovery erschien zuerst auf SwissCognitive, World-Leading AI Network.
Source: SwissCognitive