A New Era of Intelligent Robots – AI and Robotics

Posted by
Check your BMI

The fusion of AI and Robotics is poised to transform society, enabling tasks beyond humanity’s physical and cognitive limitations. From automation to national defence, the application of AI to robotics will allow machines to adapt to situations, autonomously perform complex tasks, and enable smarter environments, but it will also raise ethical and societal concerns.

 

SwissCognitive Guest Blogger: Eleanor Wright, COO at TelWAI – “A New Era of Intelligent Robots”


 

SwissCognitive_Logo_RGB

toonsbymoonlight
Imagine a world where humanoid robots cook for you, care for your loved ones, and streamline your workday – all powered by AI smarter than ever before. The global AI in robotics market, projected to surpass $124 Billion by 2030, is set to make this vision a reality. As the capabilities of AI evolve, these machines will become our companions, caregivers, and coworkers, they’ll make mobility more affordable, transform access to services, and redefine the value of human effort.

From Amazon’s fleet of 750,000 warehouse robots to Tesla’s ambitions to build 10,000 humanoid Optimus robots this year, the age of robots is upon us. Dependent on sensors and actuation systems to navigate and interact with the physical environment, this new age of robotics hinges on the developments of AI, designed to mimic and learn from its biological makers. Equipping these robots with intelligence, engineers working across various domains of expertise, utilise AI to enable vision, natural language processing, sound processing, pressure sensing, and more.

Beyond sensing, AI also enables robots to reason, adapt, and learn, using approaches including—but not limited to—reinforcement learning, neural networks, and Bayesian networks. These models and methods enable robots to assess risks and determine actions, and by learning from experience, robots can adapt to new tasks and environments. Thus, AI enables robots to perceive, act, learn, and adapt, allowing them to perform tasks with greater autonomy and precision.

However, integrating AI into robotics isn’t seamless, it comes with hurdles. Robots struggle with real-time processing delays, adapting to messy unpredictable environments, squeezing efficiency from limited hardware, and understanding human quirks like vague commands or gestures. These challenges constrain capabilities and the pace at which robots enter and dominate markets.

So, how can these challenges be addressed?

Some developments in addressing these challenges include:

1. Parallel computing

Parallel computing involves dividing larger tasks into smaller, independent tasks that can be processed simultaneously rather than sequentially. This enables increased computational efficiency, reduced latency, and improved cost efficiency. In robotics, parallel computing allows robots to process inputs from LIDAR, radar, and cameras simultaneously, enabling them to navigate environments more effectively and efficiently.

2. Transfer learning

Transfer learning leverages pre-trained models to solve new, but similar, problems. In this approach, a model trained on one task or dataset is reused and fine-tuned for a related task. For example, in machine vision for defect detection in manufacturing, fine-tuning a pre-trained model on a smaller dataset of images allows it to quickly adapt to detect specific defects, such as cracks or dents, without needing to train a model from scratch.

3. Self-calibrating AI

Self-calibrating refers to AI systems that autonomously adjust their parameters, models, or processes to maintain optimal performance without manual intervention. In robotics, self-calibrating AI enables robots to adapt to changes in their environment, hardware, or tasks, ensuring they operate with optimized accuracy and efficiency over time.

4. Federated learning

Federated learning is a technique that enables AI systems to learn from distributed data sources whilst ensuring privacy and security. It allows AI to collaboratively train a shared model without transferring sensitive data, preserving privacy and reducing reliance on centralised storage. For example, delivery robots use federated learning to optimise pathfinding without sending raw data, such as sensor inputs or location, to a central server. Instead, they locally update their models and share improvements, preserving both privacy and security.

These developments indicate a key focus on efficiency, adaptability, and learning – all of which are essential for the continued evolution of robotics in complex, real-world environments. Additionally, these advancements contribute to a future where robots collaborate with humans, leveraging their ability to learn from experience and improve over time.

So, what’s next for AI in Robotics?

Just as AI agents are taking over the digital realm, they are about to flood robotics too. AI agents embedded in robotics will supercharge the autonomy and flexibility of robots, enabling them to communicate with humans and even interpret intentions by analysing gestures and potentially emotional cues. Crucial to human-robot interactions, AI agents may prove highly effective in assisted care, hospitality, and other service industries.

Additionally, as technologies like federated learning and edge computing evolve, robots will share knowledge without compromising privacy or relying on centralised data. This will improve scalability and efficiency by reducing the need for costly centralised storage and processing, and enable additional robots to integrate rapidly into existing networks.

So, where does this leave us?

Although there are abundant market opportunities for AI in robotics, the pace at which different markets adopt robotics will vary; with AI being a key factor driving this adoption. Crucial for overcoming challenges related to autonomy, adaptability, and decision-making, AI will empower robots to perform tasks once considered too complex or risky for automation. As AI continues to evolve, it will not only raise important concerns about safety, ethics, and integration but help address them; ensuring robots can work seamlessly alongside humans and contribute to a more productive future.


About the Author:

Holding a BA in Marketing and an MSc in Business Management, Eleanor Wright has over eleven years of experience working in the surveillance sector across multiple business roles.

Der Beitrag A New Era of Intelligent Robots – AI and Robotics erschien zuerst auf SwissCognitive | AI Ventures, Advisory & Research.

0 0 votes
Article Rating
Subscribe
Notify of
guest
0 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments